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ABSTRACT 
 

The mechanical system of a drive can often be modeled as a two- or three-mass-system. The load is coupled to the 
driving motor by a shaft able to perform torsion oscillations. For the automatic tuning of the control, it is necessary to 
know the mathematical description of the system and the corresponding parameters. As the manpower and setup-time 
necessary during the commissioning of electrical drives are major cost factors, the development of self-operating 
identification strategies is a task worth pursuing.  

This paper presents an identification method which can be utilized for the assisted commissioning of electrical drives. 
The shaft assembly can be approximated as a two-mass non-rigid mechanical system with four parameters that have to be 
identified. The mathematical background for an identification procedure is developed and some important implementation 
issues are addressed. In order to avoid the excitation of the system with its natural resonance frequency, the frequency 
response can be obtained by exciting the system with a Pseudo Random Binary Signal (PRBS) and using the cross 
correlation function (CCF) and the auto correlation function (ACF). The reference torque is used as stimulation and the 
response is the mechanical speed. To determine the parameters, especially in advanced control schemes, a numerical 
algorithm with excellent convergence characteristics has also been used that can be implemented together with the 
proposed measurement procedure in order to assist the drive commissioning or to achieve an automatic setting of the 
control parameters. Simulations and experiments validate the efficiency and reliability of the identification procedure. 
 

Keywords: Signal Processing, System Identification, Least Squares Methods, Parameter Estimation, Drives, 
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1. Introduction 
 

Every new generation of electrical drives provides more 
performance, more flexibility and a higher integration[1]. 

Nowadays, mechanical designs are being continually 
optimized in terms of cost and weight. The consequences 
of this trend are less rigid constructions [1]. Thus, drive 
engineers are forced to deal with mechanics containing 
non-rigid components, which are susceptible to torsional 
oscillations.  

Here the implementation of a simple, but reliable 
procedure for the identification of the mechanical system 
of a drive is aimed. Although most should technically be 
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regarded as multi-mass-systems, the task can be simplified 
by modeling them as two-mass-systems. In doing so, only 
the dominant resonance frequency is taken into account. 
This simplified approach is well known and has been 
successfully used in steel rolling mills and other 
production machines [2]. Although the estimation theory in 
general is a classical topic which is quite well known, 
most of the existing works are old and do not apply to the 
area of drives. In fact, simple and reliable drive system 
identification is still a problem. Some commercial drives 
already have implemented techniques of this kind for high 
demand applications; in this paper the focus is on a 
procedure adequate for implementation on standard 
hardware, especially in small drives.  

A proper model of a real system is required for 
improving applications that use modern control schemes 
like state space methods or dynamic damping of 
oscillations. Furthermore, a proper model is required for 
the automatic tuning in conventional controls, for the 
automatic commissioning of drives and for diagnostics. 
The identification technique proposed in this paper is 
supposed to be applied during the automatic 
commissioning of drives. One of the most important 
requirements is its safe operation. Therefore, the excitation 
of the system with its resonance frequency should be 
avoided. In the following sections, a procedure that fulfils 
these objectives is proposed. The theoretical foundations 
are given and some results are presented. 
 

2. System Identification 
 

The identification of a real system is carried out in two 
steps as displayed in Fig. 1. 

The first step is the excitation of the system with a 
suitable signal and the measurement of its response. With 
the application of proper signal processing, a non 
parametric model is obtained.  

The non parametric model of the system is given by its 
frequency response G(jω) or by the weighting function of 
the system g(t).  

The mathematical methods, which can be applied here, 
are Fourier analysis, cross correlation and spectral analysis. 
The only assumption for the application of these methods 
is the possibility of linearizing the process. A known 

model structure is not needed [3].  

 

Real System

G(jω), g(t)

Parametric Model
TM, TL, C, D

Parameter-Fitting

Signal Processing

 
 

Fig. 1  Structure of the system identification 

 
According to Fig. 1 the second step leads to the 

parametric model of the real system. In contrast to the first 
one, the calculation of the parametric model demands the 
assumption of a certain model structure[3]. The methods 
for the estimation of the parameters of the model are 
sensitive to the chosen initial values, the quality of the 
D/A conversion and distortion of the measured signals. 
Typically, they differ with regard to their likelihood of 
convergence, the accuracy of the estimation result and 
whether the parameter fitting proceeds iteratively or 
recursively.  

The transfer function of a non-rigid, two-mass shaft 
assembly is given by 
 

( )
( )

( ) ( )

2
L C C

mech
2L C ML L

L L
M L C

M L

rs apG s G s

T T s d T s 11G s
T T Ts T T s d T s 1
T T

I I
I I

⋅ ⋅ + ⋅ ⋅ +
= ⋅

⋅ ⋅
⋅ + ⋅ + ⋅ ⋅ +

+
144424443 1444442444443

. (1) 

 

(1) can be derived from the block diagram displayed in the 
following figure. 

The block diagram represents the mechanical system. 
The non-rigid shaft of the two-mass-configuration is 
modeled as a damper-spring-system. TC is the normalized 
spring-constant and d is the related damping of the spring. 
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Fig. 2  Block diagram of the two-mass-system 

 
The transfer function of the system obviously has two 

components. It consists of the transfer function of the rigid 
system Grs(s) and a polynomial transfer function Gap(s) 
representing an all-pass [4].  
Assuming that the run-up time of the whole mechanics is 
known, the fitting algorithm estimates the parameters of 
the coupling d, TC and either TM or TL.  

The Levenberg-Marquardt-Algorithm has turned out to 
be a very powerful numerical method for the solution of 
this problem[5]. The parameter fitting is accomplished on 
the basis of N data points in the frequency domain. This 
gradient method has been applied for the identification of 
a two-mass-system. In other works, the Nelder Mead 
simplex algorithm has also been used for parameter 
identification in automatic commissioning solutions [6]. 

The Levenberg-Marquardt-Algorithm is a very fast 
numerical method and can be regarded as a mathematical 
standard of nonlinear least squares routines [7].  

While [5] mainly deals with the numerical method of 
Levenberg and Marquardt and exposes its efficiency, this 
paper predominantly addresses non parametric modeling 
in order to combine both the calculation of the frequency 
response and the Levenberg-Marquardt-Algorithm. It 
proposes a complete system identification procedure.  

The numerical method of Levenberg and Marquardt is a 
least squares method. The identification of the mechanical 
parameters is accomplished on the basis of N data points 
in the frequency domain. The minimization of a certain 
cost function proceeds iteratively. As the method requires 
initial values for the parameters, which are to be identified, 
the numerator of Gap(s) can be equated with zero for the 
antiresonance frequency and the denominator for the 
resonance frequency, respectively[5]. The complete 
mathematical derivation of this numerical method can be 
found in[7]. Its application to the presented problem is 

explained in[5]. 
 

3. Signal Processing 
 

At first glance, the measurement of a transfer function 
like (1) seems to be an easy task. If the development of an 
automatically working identification procedure is intended, 
some important aspects must be considered closely: 

For carrying out the self-identifying process the drive 
needs to be equipped with the necessary sensors and has to 
provide the stimulation function. As the rotational speed is 
a suitable variable to be measured for identifying the 
mechanical parameters, the resolution and accuracy of the 
speed measurement must be sufficient. It is extremely 
important to take into account that the successful 
parameter fitting requires the precise measurement of the 
variables, especially of the speed.  

Regarding the type of stimuli, for safety reasons the 
system should not be excited with its resonance frequency. 
Therefore, the stimulation of the system with harmonic 
functions is not recommended. If sinusoidal test signals 
are used, there is a great risk that the system will be 
excited with its resonance frequency. By using stochastic 
test signals for the excitation of the system, the risk of 
resonance can be circumvented. The system is thus 
stimulated by pseudo random binary signals (PRBS). The 
utilization of the multi-frequent PRBS has certain 
characteristics which make it superior to other known test 
signals.  

In contrast to purely random signals PRBS has a 
periodicity TP which is given by 
 

( )n
P tT 2 1 T= − ⋅ , (2) 

 

where n depends on the realization. 
Utilizing special periodic binary or ternary test signals, 

the cross correlation function may be computed with 
greater accuracy by integrating over a full period if no 
other disturbances are present in the process [8]. 

Fig. 3 displays the shape of this signal. 
A further advantage of these signals is the reduced 

amount of time necessary to conduct the measurement 
compared to pure random signals. The d.c. level of the 
sequence is only 
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Fig. 3  PRBS signal ( )u t  

 

( ) 1nû 2 1
−

⋅ −  [9]. As seen in Fig. 4 the generation of the 

PRBS can easily be achieved.  
 

 
Fig. 4  PRBS generator 

 
The bits of the register are shifted one step to the right 

after the time interval Tt. The resulting LSB is taken for 
the generation of the PRBS. The new MSB is the output of 
an XOR-gate as shown in Fig. 4. It is very important to 
consider which bits of the shift register are fed back. This 
depends on the number of elements of the register. In 
some cases, it is necessary to feed back more than two bits 
of the shift register by using more than one XOR-gate. A 
detailed explanation of this issue can be found in [10]. 

Within the period of the sequence, all the possible 
combinations of the register contents appear only once [8]. 
In principle, two main concepts for obtaining the 
frequency response need to be considered, the open loop 
and the closed loop configuration. 

This paper addresses the open loop configuration. In the 
following, the necessary mathematical background is 
presented for this case. 
 

i*q ωMiq

Fig. 5  Block diagram of the open loop configuration 

A PRBS is used as reference value for, the 
torque-generating component of the stator current iq

*. The 
first order lag stands for the current control loop; its output 
is the actual current iq. As mentioned before, the motor 
speed ωM is measured as output signal of the system. 
Since the open loop configuration has no speed controller, 
ωM is measured as an output signal of the system. Since 
the open loop configuration has no speed controller, ωM 
fluctuates with iq. For the calculation of the frequency 
response on the basis of the measured signals iq and ωM, 
the following steps are necessary [8, 10]: 

First the autocorrelation (ACF) and the cross correlation 
function (CCF) must be calculated from the signals iq and 
ωM. The ACF is  
 

 ( ) ( ) ( )
T

ii T
0

1lim i t i t dt
T→∞

Φ τ = ⋅ − τ∫ . (3) 

 

The CCF is given by  
 

 ( ) ( ) ( )
T

i T
0

1lim i t t dt
Tω →∞

Φ τ = ⋅ − τ ω∫ . (4) 

 

T is the measurement time. The ACF and the CCF are 
associated with each other by the convolution integral 
 

 ( ) ( ) ( )i ii
0

g t t dt
∞

ωΦ τ = Φ τ −∫ , (5) 

 

where g(t) is the weighting function of the process to be 
identified. (5) is a fundamental equation for the estimation 
of g(t) out of a given pair of correlation functions Φii(τ) 
and Φiω(τ) [8].  

As the realization of an infinitely long measurement is 
impossible in technical systems,[10] proposes the following 
estimations for (3) and (4): 
 

 ( ) ( ) ( )
T

ii
0

1ˆ i t i t dt
T

Φ τ = ⋅ − τ∫  (6) 

 

Then the CCF, respectively, is  
 

 ( ) ( ) ( )
T

i
0

1ˆ i t t dt
TωΦ τ = ⋅ − τ ω∫ . (7) 

 

As the test signal is known a priori, Φii can be 
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calculated straightforward. The corresponding equations 
for the ACF of the pseudo random binary test signal can 
be found in [10]. 

The cross correlation methods analyze the measured 
signals resulting in the cross correlation function in the 
time domain. The deconvolution of the CCF provides the 
weighting function of the system directly. The frequency 
response ( )G jω  can be calculated from g(t) as: 
 

( )
( ){ }
( ){ } ( ) j t

0

g t
G j g t e dt

t

∞
− ωω = = ⋅

δ ∫
F

F
 (8) 

 

The transfer function can be obtained by 
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L
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In practical cases, the calculation of the transfer 
function is not necessary and only the frequency response 
is of interest. It can be obtained from (8), but it also 
follows by using the relationship between the spectral 
density functions iS ω  and iiS  [11]: 
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 The spectral densities are the Fourier transforms of the 
correlation functions. 
 The main steps of the signal processing are summarized 
in Fig. 6. 
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Calculation of the
correlation functions

 
 

Fig. 6  Flow chart of the signal processing 

The theoretical considerations above apply for 
continuous systems and signals. In the digital realization 
the quantification of the signals and the sampling time 
have a tremendous impact on the quality of the 
identification. The practical approach to the discrete 
system can be achieved by means of simulation. With the 
help of a “Quantizer” the signals, especially the output 
signal can be discretized to a given number of steps that 
correspond to the resolution of the ADC in the 
measurement equipment.  

The resolution of the speed represents a difficult 
problem. Incremental encoders with 2084 impulses per rev. 
are standard today, yet the sampling time affects the 
resolution of the speed signal, and demands a much higher 
resolution of the position. The short sampling time is 
necessary in order to follow the stimulation with the PRBS. 

 
4. Results 

 
Although the numerical simulation is an appropriate 

means of investigation, the real confirmation of the 
effectiveness of the proposed procedure can only be 
demonstrated in experiments in the laboratory. Therefore, 
a flexible setup was designed. Fig. 7 shows its structure. 
The digital control hardware is based on the dSMC-chip, 
which is a derivate of the VECON and has an analogue 
interface that uses the VECANA 01 (TI) for the analogue 
data acquisition. The cycle time of the control software 
was chosen to be 62.5 sµ .  
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Fig. 7  Structure of the laboratory setup 
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As explained above, the measurement of the speed has 
to be carried out with a very high resolution, thus the 
analogue signals of a 2048 pulse incremental encoder are 
used as additional information. The resolution reached in 
this way is approximately 0.5 Mio. inc./rev. 

Fig. 8 shows the mechanical setup. A permanent 
magnet excited synchronous machine with a nominal 
torque of 30 Nm , fed by a PWM-inverter with field 

orientated control, drives the mechanics with two 
concentrated masses and a non rigid shaft. 

In the experimental setup, the resonance frequency resf  

is equal to 100Hz.  

In order to confirm the effectiveness of the whole 
procedure the frequency response of the mechanical 
system was obtained by stimulating the system with a 
PRBS and recording the resulting speed in an open loop 
scheme (Fig. 5). The signals were treated by using the 
procedure explained above leading to G(jω). With the help 
of a parameter fitting algorithm, the parameters of the 
considered mechanical system can be found.  

Fig. 9 shows the frequency response of the all-pass 
element (1) according to the open loop configuration of 
Fig. 5.  

The crosses in the Bode diagrams mark the calculated 
values of the frequency response as a result of the applied 
signal processing. The bold line represents the frequency 
response calculated after the identification of the 
parameters of the system by using the Levenberg- 
Marquardt-Algorithm. The dotted lines show the exact 

frequency response. The comparison of these three curves 
demonstrates the efficiency of the proposed procedure. 
The system has been excited with 2kHz . The number of 

bits of the shift register is equal to 10. The bigger the 
value of n, the closer the PRBS becomes to white noise. 

The oscillogram depicted in Fig. 10 shows the measured 
signals. The upper signal is the measured speed and the 
lower one is the stimulation signal iq. 
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Fig. 10  Measured speed and excitation PRBS 

 
 The sampling time tT  of the PRBS is 20.83ms . With 

(2) its periodicity is PT 21.31s= . The speed signal is 

periodic, although the system is stimulated by a pseudo 
random signal. Its period is about 21s. Thus, it agrees with 
the periodicity of the excitation signal. The amplitude of 
the stimulating current iq is 8.1A  corresponding to a 

torque of 17.7 Nm . 
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Fig. 9  Frequency response for open loop configuration 

 

 

Fig. 8  Mechanical setup 
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The frequency response Gmech(jω) can be calculated 
from the two measured signals in the way explained above. 
The result is shown in Fig. 11: 
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Fig. 11  Frequency response of the mechanics 

 
Since the run-up time M LT T+  of the whole system is 

known, the frequency response of the all-pass element  
Gap(jω) (1) can be calculated and it is shown in Fig. 12. 
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Fig. 12  Measured and calculated frequency response of the  

all-pass element 
 

Fig. 12 illustrates the very efficient identification of the 
parameters of the mechanical system by using the method 
proposed in this paper. The anti-resonance and the 
resonance frequency of resf 100 Hz= , i.e. res res2 fω = ⋅ π ⋅  

have been identified very precisely. Furthermore, Fig. 12 
points out the efficiency of the Levenberg-Marquardt least 
squares method. Its calculation fits very well with the 
measured frequency response. 

5. Conclusions 
 
This paper has presented a method for the identification 

of the parameters of the mechanical system of a drive in 
an open loop control scheme. It shows that the frequency 
response of a two-mass-system can be obtained by 
exciting the system with a PRBS and using the CCF and 
ACF. A numerical algorithm with excellent convergence 
characteristics has also been used that can be implemented 
together with the proposed measurement procedure in 
order to assist the drive commissioning or to achieve an 
automatic setting of the control parameters. The paper 
gives the mathematical background and presents 
simulations and experiments that validate the efficiency 
and reliability of the identification procedure.  
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